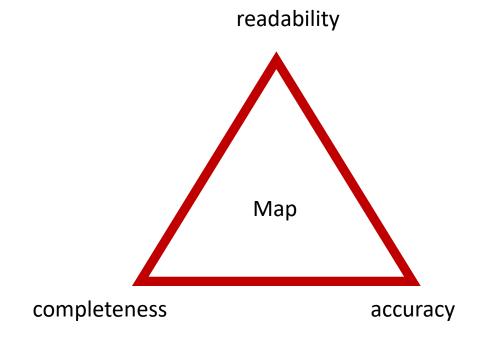


Possibilities of systematizing cartographic rules


Jiří Drozda, Research Institute of Geodesy, Topography and Cartography
Václav Talhofer, University of Defence
Filip Dohnal, University of Defence
Czech Republic

The main goal of cartographic production

The main goal of cartographic creation – to create a complete, topographically correct and easily readable map

- The definition of "Cartographic Rules" (Cartographic Rules, Cartographic Conventions or Cartographic Constraints) is currently used for defining the generalization and visualization procedure of data sets
- In the scope of map creation technology, cartographic rules are usually used to define the procedure and control of the cartographic generalization (Beard, 1991), (Hallie, 1999), (Hallie, 2003), (Hallie & Weibel, 2007)

- Cartographic rules not only specify the basic properties and superimposing of cartographic symbols, but they may also define rotations, displacements and even or geometry manipulations of symbols with exactly the same goal as in traditional computer-assisted cartography (*Iosifescu, Hugentobler, & Hurni, 2009*)
- Cartographic representation rules lead to a quality topographic map (CartouCHe, 2012)
- Cartographic rules are sets of rules have evolved regarding the selection and placement of text – particularly in relation to topographic maps (ICSM, 2020)
- A set of rules for designing and building a symbol key, i.e., for creating the appearance of a map (*Voženílek*, et al., 2011)

ICC2023 CAPE TOWN

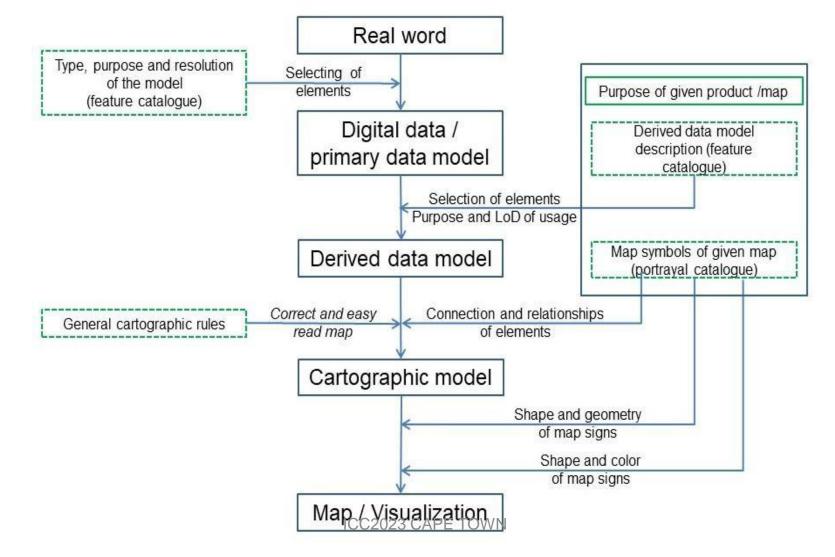
- Declarative set a target state and are usually given without a description of how to achieve this goal
- It allows flexible modeling, but on the other hand, it often leads to an inconsistent approach and the possibility of achieving several dozen "correct" solutions

C2023 CAPE TOWN

- Many rules are formulated only as verbal formulations without the possibility of its systematized writing
- The search and identification of a cartographic situation, its solution and the application of individual cartographic rules strongly depend on the experience and professional skill of the cartographer
- The solution of a cartographic situation is not always a straightforward process
- There may be several correct or acceptable solutions
- As a rule, it is a complex solution of several interrelated cartographic situations

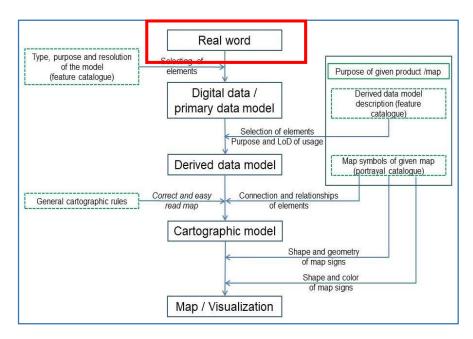
C2023 CAPE TOWN

- Digital cartographic technologies:
 - rich source geographic data primary or derived data models
 - many tools available in the software systems used
 - many custom created processes
 - etc.

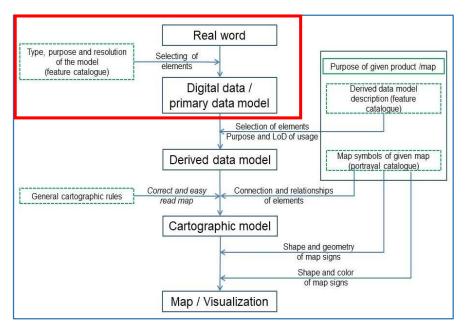

Questions:

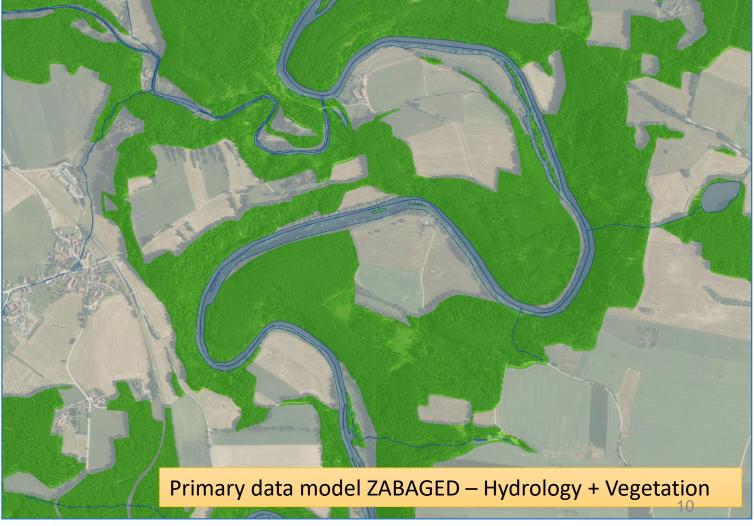
- how to ensure a consistent approach to dealing with unique situations within a state mapping or the creation of standardized maps
- how to help beginners or less experienced cartographers
- etc.

Approaches to rules systematisation – general schema

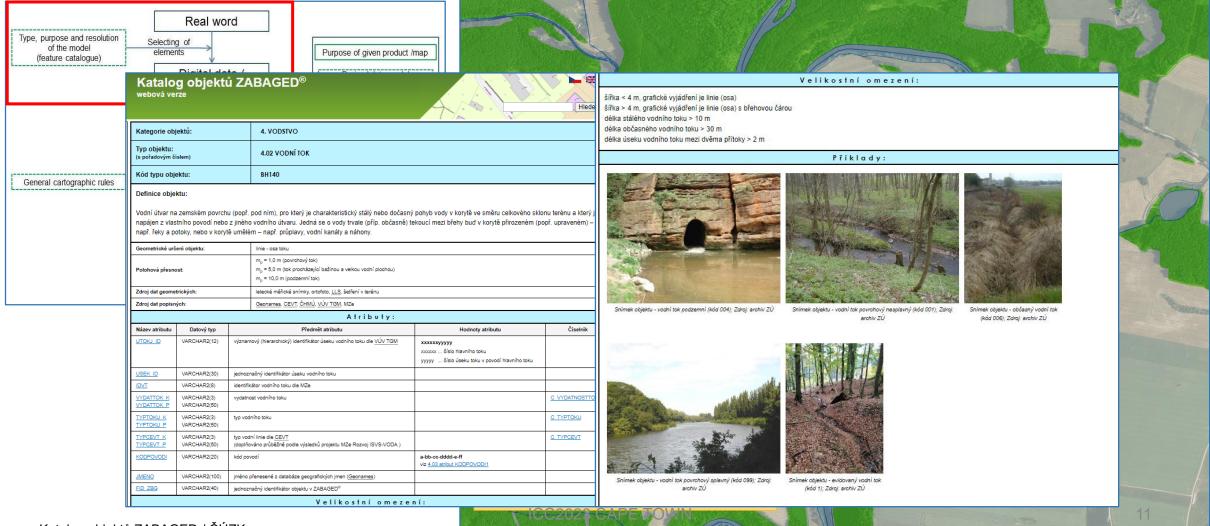


Real world to primary data model transformation




Source: Geoportál ČÚZK / ČÚZK

Real world to primary data model transformation



Source: ZABAGED/ ČÚZK

ZABAGED Extraction Guidance - Hydrology

Source: Katalog objektů ZABAGED / ČÚZK

MGCP Extraction Guidance

		goto top
BH140 Line Fea	ature Extraction Guidance	River Line Featu
Extraction	Length >=300 m. />=600 m. and Width < 25 m. or Landmark. or (needed to complete the	Definition DFDD Code
Criteria		Spatial
Delineate	Delineate a centre line along the visible extent of the river, either at the surface of the wa	representation
	water has coursed through.	LIST OF
		INHERITED
Attributes	CDA, HYP, NAM, NFI, NFN, TID, WCC, WID, WST	DFI

BH140 General Extraction Guidance

- 1. The intent of delineating a River feature at the most appropriate level of delineation is to promote completen network.
- 2. For further guidance and application of the spacing criteria, see Drainage Network General Issues.
- 3. Extract those feature components needed to complete the component network or to establish connectivity. is actually on the ground. As a guide, each extent should be no shorter than 300 m. />=600 m.
- 4. A minimum length of 300 m. >=600 m. and spacing between Inland Water Line Features of >=200 m. />=40 Features to be collected. This is only a guide and should not mean potentially significant drainage is left off be 5. Populate the width with a predominant value, do not break the feature into segments with their own widths,
- unless it changes dramatically in width so that the capture of a new area drainage feature is prudent to the por

incorrect	10m	15m	8m
correct	<u> </u>	15m	

- Where there is confusion between area rivers and lake, capture a Lake (BH080).
- 7. Drainage may be isolated when it does not visibly connect to any drainage network or river tributary system
- 8. Inland Islands:
- a. Landmasses to be captured as inland Islands (BA030) must have an area >=15,625 sq. m. />=62,500 sq
- b. Land areas bound by Inland Water Line Features will not be considered islands. Land areas >=15.625 sq. extracted as islands unless the braided streams are >=25m wide. An example of this would be in the Mississip
- c. Inland Water Area Features do NOT have to be split up into multiple extents when extracting landmasses
- 9. Depiction of Dry Inland Water Area Features:
- a. A dry Inland Water Area Feature should be shown wherever there is a flat (in cross section), sandy area u within, that may flood whon it rains. This applies to mountainous and low lying torrain.

River Line Feature

A natural flowing watercourse

DFDD Code

LIST OF FEATURE ATTRIBUTES

INHERITED ATTRIBUTES (goto supertype)

DFDD [MGCP] Code	Name	Туре	Unit
CDA	Covered Drain	CodeList	
[GEOM]	Spatial representation of the feature	GM_Curve	
HYP	Hydrologic Persistence	CodeList	
NAM	Name	CharacterString	
<u>NFI</u>	Named Feature Identifier	CharacterString	
<u>NFN</u>	Name Identifier	CharacterString	
<u>TID</u>	Tide Influenced	CodeList	
<u>WCC</u>	Watercourse Channel Type	CodeList	
WID	Width	Real	#Metre
WST	Watercourse Sink Type	CodeList	

Back to Feature Type . goto top

CDA: Covered Drain

An indication that a watercourse section is completely covered over and connects to Definition

uncovered watercourses at each end

DFDD Code

CodeList (See listed values)

GEOM: Spatial representation of the feature

Definition Geometric primitive describing the spatial characteristic of the feature

GM Curve

HYP: Hydrologic Persistence

The degree of persistence of water in an inland water body (for example: a spring, a flowing Definition stream, a lake or a pond). (Inland water bodies may also include, for example, crevices,

ditches, fountains, and water troughs.)

DFDD Code

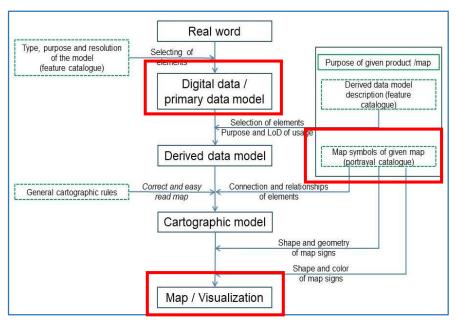
Type CodeList (See listed values)

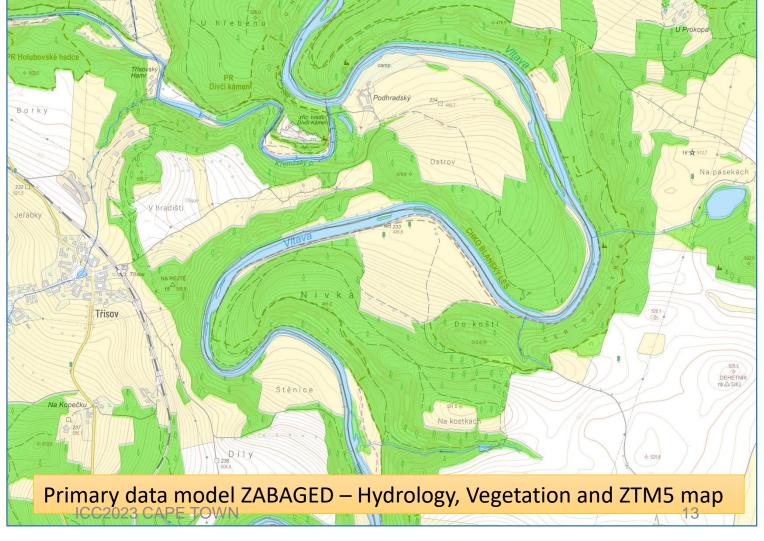
Back to Feature Type . goto top

Definition A textual identifier or code that is used to denote a feature

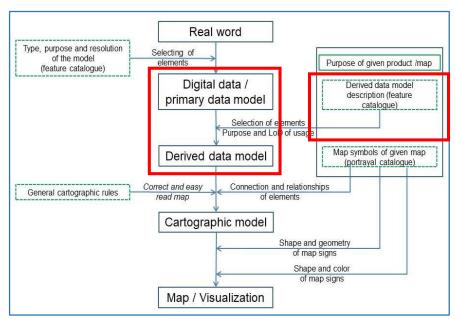
DEDD Code

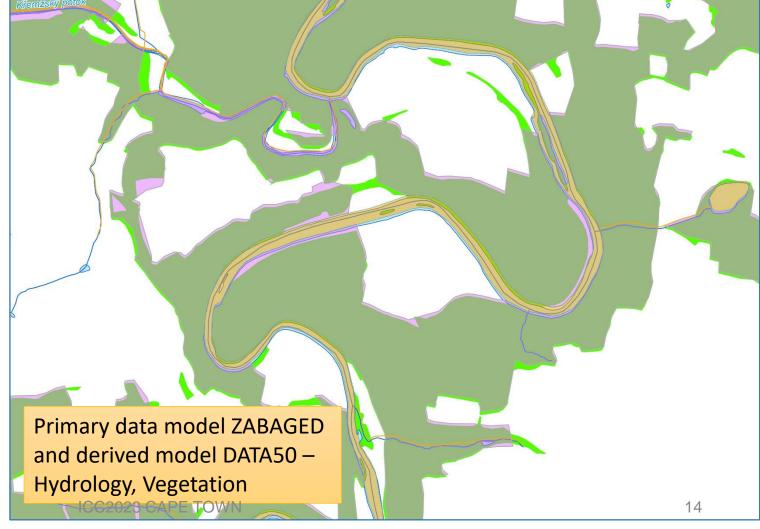
Constraint 0 to 80 Characters Type CharacterString


NFI: Named Feature Identifier


ICC2023 CAPF TOWN Back to Feature Type . goto top

Visualization of the primary data model (basic map)





Derived data model creation

Source: ZABAGED + DATA 50 / ČÚZK

Derived data model creation

Zdroj dat

- ZABAGED pole "ZDROJ" uvádí název vrstvy v ZABAGED ve tvaru Název vrstvy/ZABAGED
- MGE pole "ZDROJ" definuje vstupní DGN, pole "PŘEDMĚT" popisuje vrstvu a pole "NÁZEV ve FGDB" definuje název ve FGDB při migraci
- Bodová pole "ZDROJ" defuje název zdrojového souboru, pole "PŘEDMĚT" popisuje vrstvu nebo její podmnožinu

DATA50

- "FeatureDataset" obsahuje název příslušného datasetu v DATA50
- "FeatureClass" obsahuje název příslušné vrstvy v DATA50

"ZNACKA" je atribut generovaný při migraci,který je složen ze tří částí: ZZZPPVV (ZZZ ... číslo značky, PP ... podkategorie značky (písmeno převedeno do čísla), VV ...
 vizualizační varianta značky), speciálními značkami jsou XXXXX97 (značka slouží pouze k editaci, nepoužívá se pro vykreslování), XXXXX98 (značka dočasná, postupně se budou

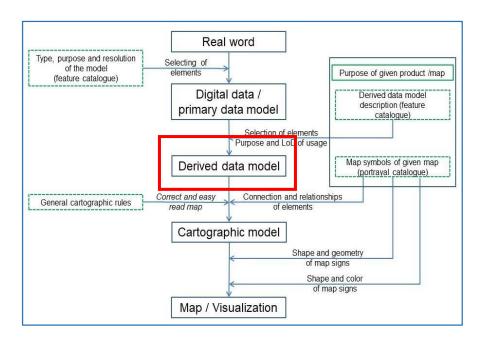
přiřazovat prvkům jiné značky, až tato značka zmizí), XXXXX99 - prvky určené ke smazání XXXXXXXX – přeškrtnutá značka znamená že hude pravidlo přiřazováno ručně

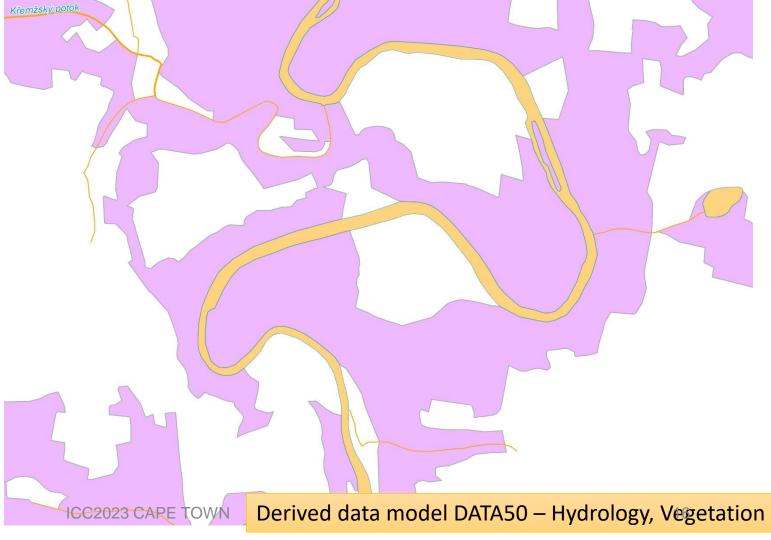
uživatelem

Pokud je pole ZNACKA vybarveno šedou barvou, tak byl ve finální implementa

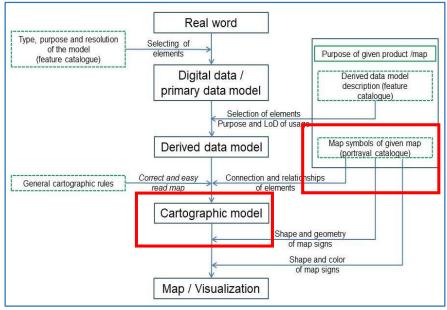
- "ZDROJ" definuje z jaké vrstvy ZABEGED nebo GEONAMES prvek pochází
- "ZDROJ_ID" textová varianta jednoznačného identifikátoru ZABAGED
- atributy převzaté ze zdrojových dat jsou to atributy nutné pro kartografii (na
- "NATOCENI" je atribut který byl vytvořen pro určení natočení mapového prvk
- "VIDITELNOST50" a "VIDITELNOST100" jsou atributy využívané systémem
- "ZM50" a "ZM100"je atribut udávající příslušnost prvku k mapovému listu
- "elevation" je atribut udávající nadmořskou výšku prvku (využíván u vrstevnic
- "ZAHRANICI" udává, jestli prvek leží v zahraničí (=1), vnitrozemí (=0), případ
- VIS (Z AdmUzemi B Pom), hodnoty:
- 1 def. bod se anotuje; podmínka ft_sb003.NAZEV <> ft_sb001. NAZEV_LAU
- 2 def. bod se neanotuje (duplicita se SB001); podmínka ft_sb003.NAZEV =
- 3 def. bod se neanotuje (duplicita se SB001); podmínka ft_sb003.NAZEV =

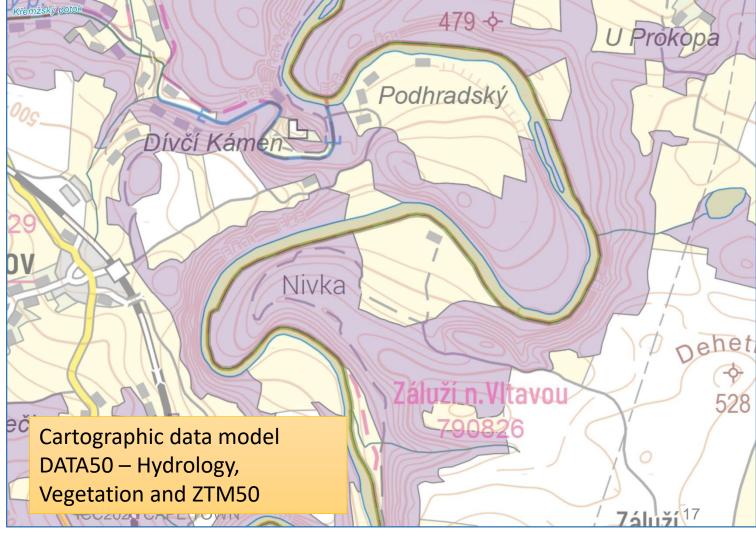
e ì	ZDROJ	PŘEDMĚT	NÁZEV ve FGDB	FeatureDatas et	FeatureClass	ZNACKA	NAZEV (BH140)	NAZEV2	JMENO (BH080	Rueld_ZM50	Ruleld_ZM100	ZAHARANCI
	Vody.dgn	Vodní tok stálý povrchový	VodniTokStalyPovrchovy	Z_Voda	Z_Voda_L	3020100				G	O2(nasileni)	
	Vody.dgn	Vodní toky v zahraničí	VodniTokyVZahranici20_I	Z_Voda	Z_Voda_L	3020400				G	O2(nasileni)	
2	Vody.dgn	Vodní toky v zahraničí	VodniTokyVZahranici21_I	Z_Voda	Z_Voda_L	3020500				G	O2(nasileni)	
/k	Vody.dgn	Vodní toky v zahraničí	VodniTokyVZahranici22_I	Z_Voda	Z_Voda_L	3020600				G	O2(nasileni)	
1	Vody.dgn	Vodní toky v zahraničí	VodniTokyVZahranici23_I	Z_Voda	Z_Voda_L	3020700				G	O2(nasileni)	
ı	Vody.dgn	Vodní tok stálý podzemní	VodniTokStalyPodzemni	Z_Voda	Z_Voda_L	3030000				G	O2(nasileni)	
Т	Vody.dgn	Vodní tok občasný povrchový	VodniTokObcasnyPovrch	Z_Voda	Z_Voda_L	3040000				G	O2(nasileni)	
	Vody.dgn	Vodní plochy	VodniPlochy	Z_Voda	Z_Voda_P	3330000				G	O2(nasileni)	
ic	Vody.dgn	Břehovka lomu, odkaliště	BrehovkaLomuOdkaliste	Z_Voda	Z_Voda_P	3340000				G	O2(nasileni)	


ш															
		Název features		FeatureDatas et	FeatureClass	ZNACKA	POPIS	POZNÁMKA	ZAHRAN	VID	VIDITELNOST1	00			
ΑU = 1 = 1		333500X Vodní plochy		Z_Voda	Z_Voda_PA50 Z_Voda_PA100	3335001 3335002 3335003 3335004	popis ručně	anotace 333500X, symboly pro všechny kategorie				RuleID_ZN	м50/100 = 3 AND ("JMENO"	IS NOT NULL OR "JMENO"	· · · ·)
_		333500X Vodní plochy v zahraničí		Z_Voda	Z_Voda_PA50	3335101 3335102 3335103 3335104	popis ručně	anotace 333510X, symboly pro všechny kategorie							
		302510X Vodní tok stálý povrchový		Z_Voda	Z_Voda_LA50 Z_Voda_LA100	3025101 3025102 3025103 3025104	popis ručně	anotace 302510X, symboly pro všechny kategorie				RuleID_ZN	и50 IN (2, 3, 4, 5, 6) AND ("I	NAZEV" IS NOT NULL OR "N	NAZEV" <> ")
		303500X Vodní tok stálý podzemní		Z_Voda	Z_Voda_LA50 Z_Voda_LA100	3035001 3035002 3035003 3035004	popis ručně	anotace 303500X, symboly pro všechny kategorie				RuleID_ZN	м50 = 10 AND ("NAZEV" IS	NOT NULL OR "NAZEV" <>	")
		304500X Vodní tok občasný povrchový		Z_Voda	Z_Voda_LA50 Z_Voda_LA100	3045001 3045002 3045003 3045004	popis ručně	anotace 304500X, symboly pro všechny kategorie				RuleID_ZN	м50 = 12 AND ("NAZEV" IS	NOT NULL OR "NAZEV" <>	")
		3025X00 Vodní tok v zahraničí		Z_Voda	Z_Voda_LA50 Z_Voda_LA100	3025400 3025500 3025600 3025700	popis ručně	anotace 3025X00, symboly pro všechny kategorie				RuleID_ZN	M50 IN (2, 3, 4, 5, 6, 10, 12)	AND ("NAZEV2" IS NOT NU	LL OR "NAZEV2" ⇔ ")
-	V:\Soubon/Pr	ro_TMAPY\DATA50_final\Z_Voda_P_rozs	seknuti 101018					JALU - nahrazeno							
- 1	coabory a r							or inco maintazono							

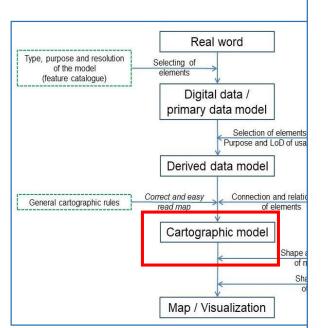

Source: Datový model DATA 50 / ČÚZK

Derived data model




Source: DATA 50 / ČÚZK

Cartographic model creation



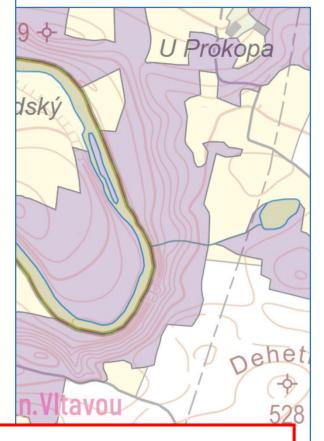
Cartographic model creation

VODY (Z Voda L, Z Voda P, Z VodaObjekt L, Z VodaObjekt P)

- Podklady pro kontrolu:
 - ZABAGED (barevně odlišené objekty a jejich názvy)
 - v TOC ve skupině vrstev pomocné vrstva POM_Z_VodaObjekt_L_Pom (shybky)

Vodní toky (Z_Voda_L)

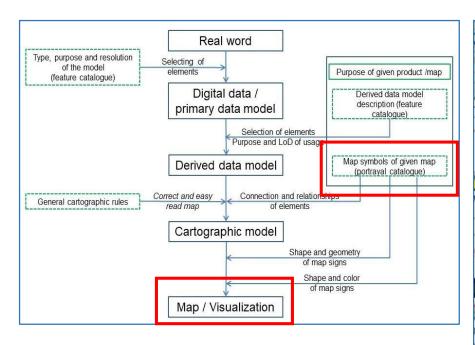
- existenci, průběh a typ vodního toku kontrolujeme podle ZABAGED (ZAB Voda L)
- doplňujeme pouze toky delší než 500 m (stávající toky v délce 250–500 m již v ZM50 ponecháme, ale nové toky pod 500 m již nedoplňujeme!)
- podzemní toky, které jsou pramenem, odstraňujeme/nedoplňujeme
- podzemní úsek kratší než 4 tečky (±120 m) uprostřed stálého toku změníme na stálý nebo občasný
- občasný vodní tok, který je pramenem a je kratší než 2 čárky (±180 m), změníme na stálý tok
- v případě výskytu "přetrhaných" vodních toků tyto toky propojíme
- pokud vede vodní tok skrz vodní plochu, nebude v místě křížení s břehovkou přeseknutý
- u nově vytvořených vodních toků s názvem nezapomeneme vyplnit v atributech JMENO, který zkopírujeme ze ZABAGED viz Manual ArcGIS, kapitola 3.2 kopírování atributů ze ZABAGED)

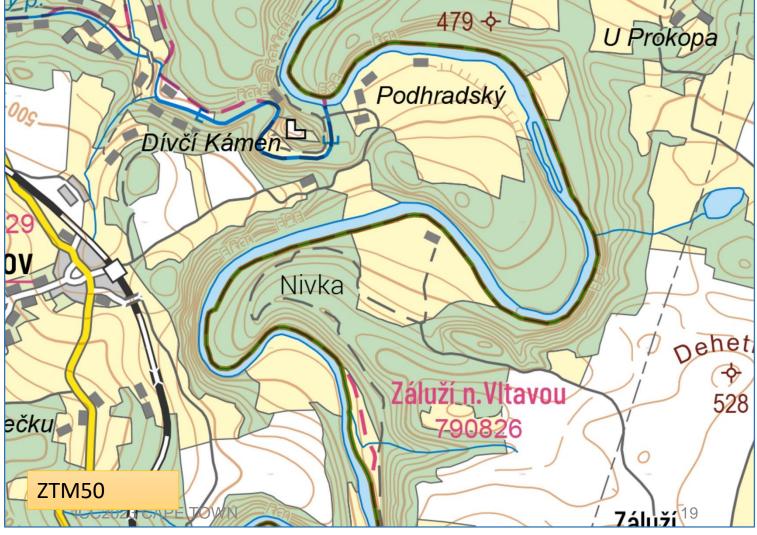

Vodní plochy (Z Voda P)

- zrevidujeme existenci a tvar plochy dle ZABAGED (ZAB_Voda_P), příp. upravíme
- vybíráme vodní plochy větší než 2.500 m² → v případě výskytu většího počtu podměrečných ploch můžeme zakreslit jednu větší plochu

při tvorbě nové vodní plochy musíme VŽDY odstranit plochu vegetace ležící pod

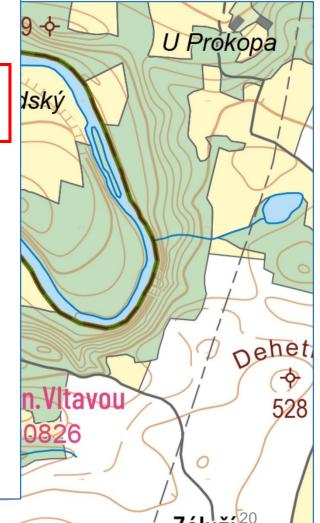
→ nástroj Clip (Editor → Clip...)


 pokud potřebujeme rozseknout vodní plochu jinde, než po rozseknutí ručně vytvořit masku (tzn. skrýt nově vzniklou We select water areas larger than 2.500 sqm – in case of a larger number of undersized areas, we can draw one larger



Final map visualization (ZTM50)

Final map visualization (ZTM50)



3.	Vod	

Type	, purpose and reso of the model
	(feature catalogue

General cartographic r

_	. * '													
	Číslo značky	Podlomení	Předmět (název feature)	Kritérium velikosti	Grafické znázornění v ZM50	Grafické znázornění v ZM100	DATA 50 – feature class	Čislo RR	Název kartografického pravidla, intervaly použití	Symbol ID	ZM50 ZM100	 Kód typu objektu (feature kód ft_)	Název atributu	Hodnota atributu
П	302	01	vodní tok stálý povrchový do 5 m šířky	≥ 500 m	(jméno)	(jméno)	Z_Voda_L	00		2	2	bh140	KC_typtoku KC_vydatnosttoku	001,099 008
		02	vodní tok stálý povrchový nad 5 m šířky	≥ 500 m	(iméno)	(iméno)	Z_Voda_P					bh080 nf120 bh000		
T		04		≥ 500 m	(jméno)		Z_Voda_L	00		3	3			
١	302	05	vodní toky v zahraničí		(iméno)			00		4	4		není v ZABAGED	
١		06			(jméno)			00		5	5			
١		07			(iméno)			00		6	6			
	303	00	vodní tok stálý podzemní nebo ponorný	≥ 100 m	(jméno)	(jméno)	Z_Voda_L O_Maska50_HrUzivani	00	maskuje do hranice užívání	10	7	bh140	KC_typtoku	004
Ī	304	00	vodní tok občasný povrchový	≥ 500 m	(jméno)	(jméno)	Z_Voda_L O_Maska50_HrUzivani	00	maskuje do hranice užívání	12	8	bh140	KC_typtoku KC_vydatnosttoku	001 006
İ	307	00	směr vodního toku		—>	- January	Z_VodaObjekt_L	00		18	18			
Ì	311	00	hráz u vodních ploch			100	Z_VodaObjekt_L	00		2	2	db090		
	312	00	přehradní hráz bez komunikace			1	Z_VodaObjekt_L	00		3	3	bi020	KC_podtypobjektuvods	P
	313	00	jez	≥ 20 m	Jan	pade	Z_VodaObjekt_L POM_Z_VodaObjekt_P_ Pom	00 98	buňkový jez namigro- vaný jako plocha	4	4	bi020	KC_podtypobjektuvods	J

DPS DTM Hydrology – Feature symbology

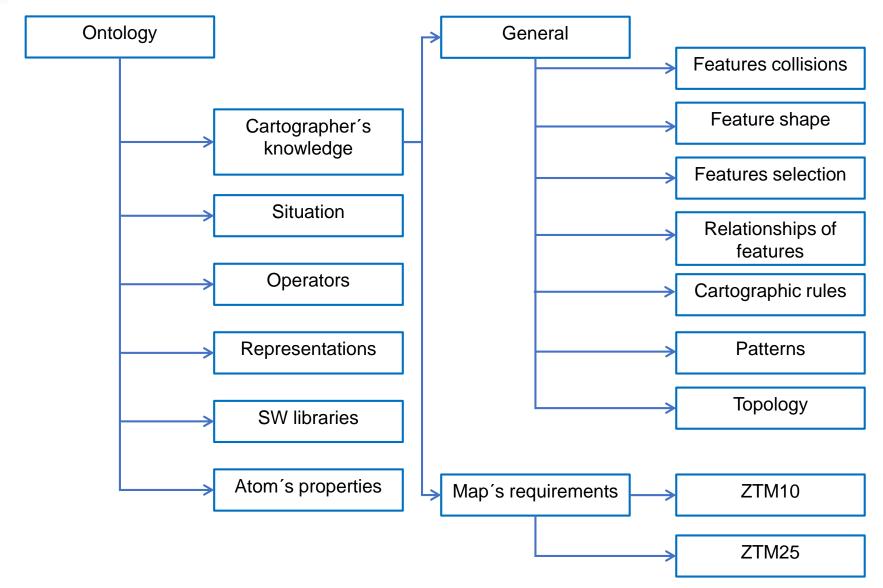
DGIF_Feature_AlphaCode	ProductObject_Rule ▼	SymbolObject_ID	Symbol Sample	SymbolObject_Compone ntConfiguration	SymbolPlacementRuleObject_ID	LabelObject_ID
River	(verticalRelativeLocation = belowGroundSurface) AND ((hydrologicPersistence = perennial) OR (hydrologicPersistence = noInformation))	SO_0278		Component L00015 is applied to the perimeter and is filled with Component A00007.	SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_058, SPO_059	LO_0643
River	({ verticalRelativeLocation = onSurface } OR { verticalRelativeLocation = noInformation }) AND ({ hydrologicPersistence = intermittent } OR { hydrologicPersistence = dry })	SO_0302		Component L00041 is applied to the perimeter and is filled with Component A00020	SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_056, SPO_058, SPO_059	LO_0008
River	(verticalRelativeLocation = belowGroundSurface) AND ((hydrologicPersistence = intermittent) OR (hydrologicPersistence = dry))	SO_0302		Component L00041 is applied to the perimeter and is filled with Component A00020	SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_056, SPO_058, SPO_059	LO_0643
River	((verticalRelativeLocation = onSurface) OR (verticalRelativeLocation = noInformation)) AND ((hydrologicPersistence = perennial) OR (hydrologicPersistence = noInformation))	SO_0247		L00015	SPO_007, SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_058, SPO_059	LO_0008
River	(verticalRelativeLocation = belowGroundSurface) AND ((hydrologicPersistence = perennial) OR (hydrologicPersistence = noInformation))	SO_0247		L00015	SPO_007, SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_058, SPO_059	LO_0647
River	((verticalRelativeLocation = onSurface) OR(verticalRelativeLocation = noInformation)) AND((hydrologicPersistence = intermittent) OR(hydrologicPersistence = dry))	SO_0284		L00041	SPO_007, SPO_025, SPO_041, SPO_042, SPO_048, SPO_055, SPO_058, SPO_059	LO_0008

Questions

- Where are real rules?
- How are cartographic rules defined?
 - by type of generalisation algorithm
 - by critical situation solution proposals, examples
 - etc.
- How to enrich some documents dealing with cartographic or feature extraction rules?
- Possible answer:
 - to systemise rules
 - to create the knowledge database

ICC2023 CAPE TOWN

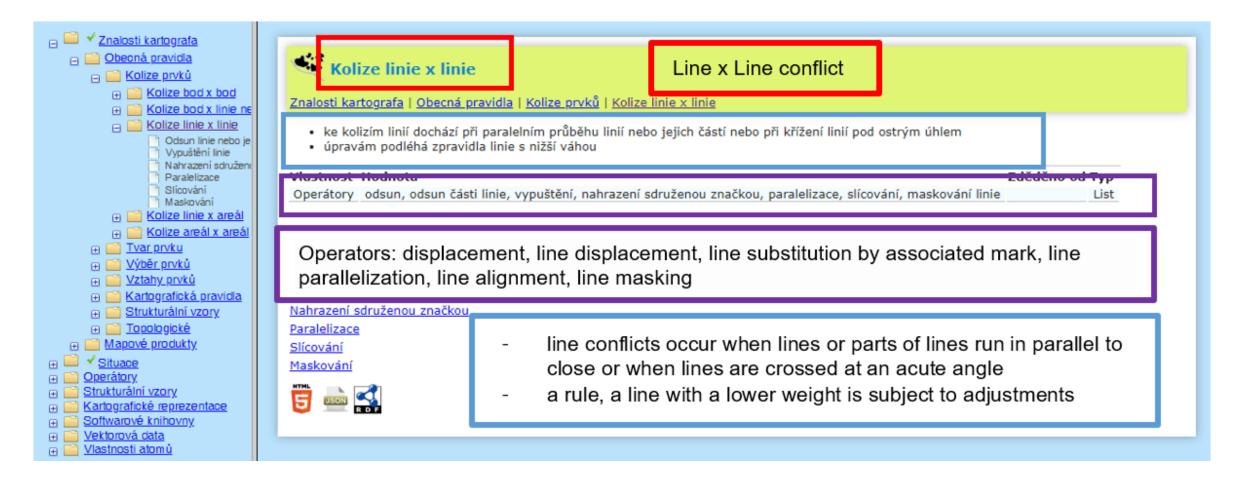
Approaches to rules systematisation


- map readability requirements, which can be called as general cartographic rules
- map content requirements, i.e. rules linked to the specific purpose and use of the resulting map. These rules are specific to particular sets of map features, the size and importance of individual map features and their interrelationships (Drozda & Augustýn, 2016)

23

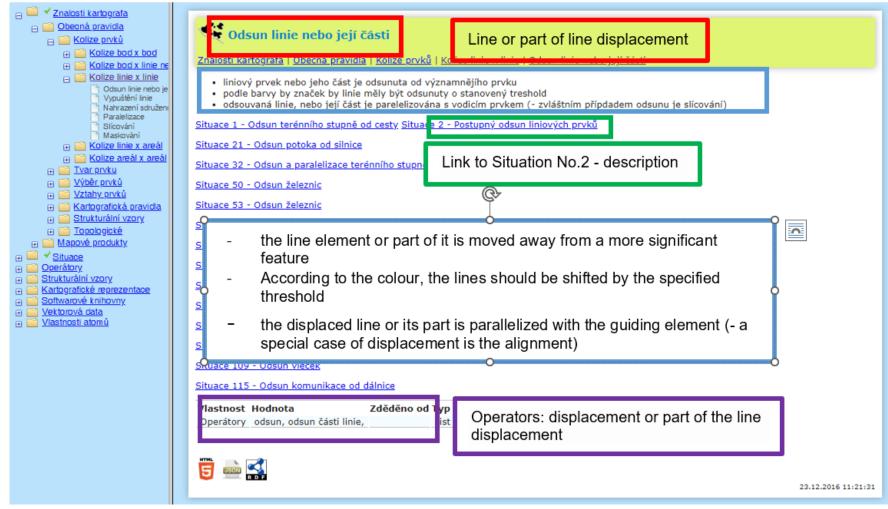
General structure of database

Proposal of solution – database of cartographic rules

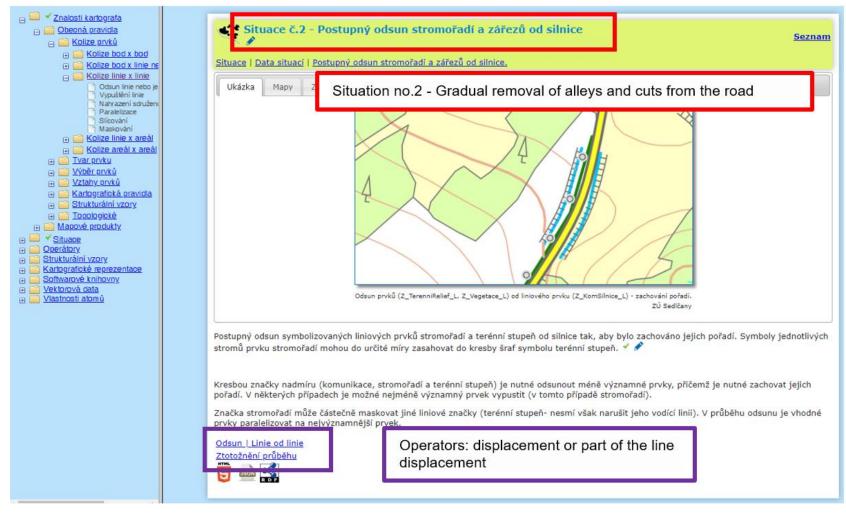

- Aim
 - to create the knowledge database with a logical structure
- Usage
 - on-line tool for searching for suitable solutions for cases of cartographic generalization
 - possibility to extend DB with accepted solutions
- Advantages
 - the rules are not only written and declarative, but also with instructions and examples of solutions
 - possibility to extend the DB
 - possibility to apply to other types of maps
 - reduction of individual solutions, especially for state mapping or standardised products (strong cooperation between the different components of the production cycle)
- Disadvantages
 - Czech language environment
 - Partly ready only for civilian state mapping in the Czech Republic
- Access http://euradin.vugtk.cz/TB04CUZK001/03 CartographicSituations/web/

ICC2023 CAPE TOWN 25

Example of the rule *Line* × *line* conflict – rule description



Example of the rule *Line or part of line displacement* – rule description

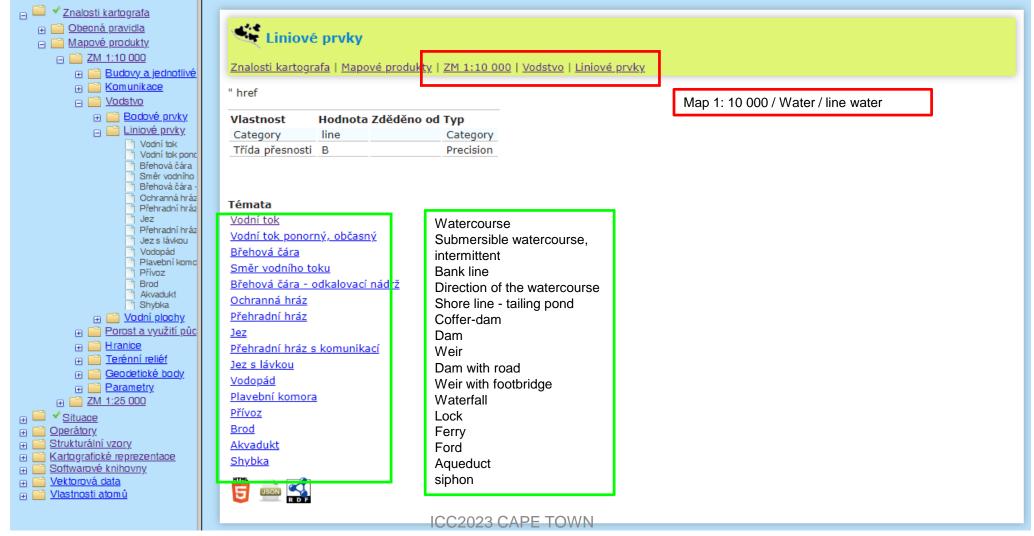


Example of the rule *Line or part of line displacement* – source data

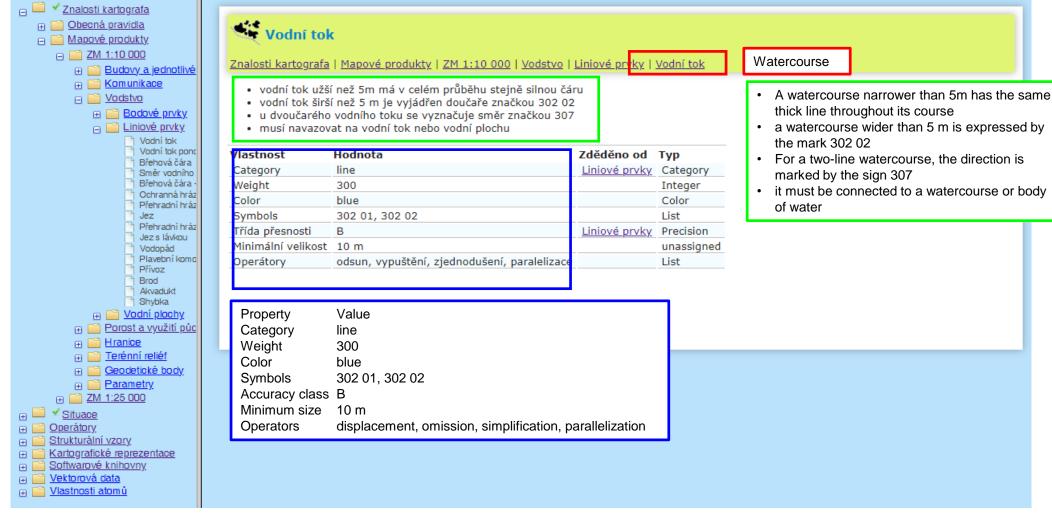
Example of the rule *Line or part of line*displacement – final maps ZTM10 and ZTM25



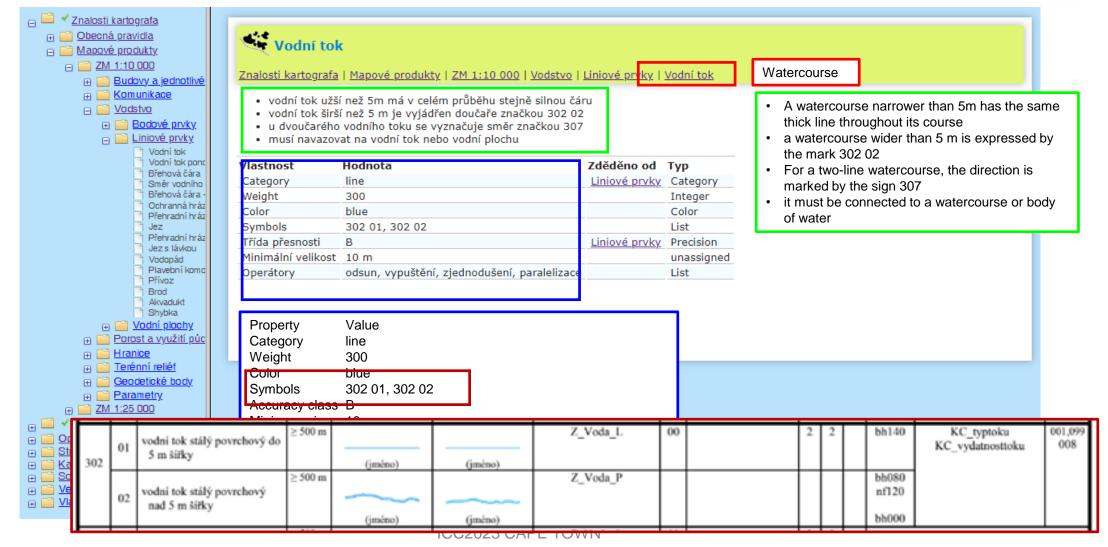
Example of the rule connected with water maps ZTM10



Example of the rule connected with water maps ZTM10 – *line water*



Example of the rule connected with water maps ZTM10 – *line water*



Example of the rule connected with water maps ZTM10 – *line water*

Example of the Operators

ICC2023 CAPF TOWN

Operátory |

Operátory jsou základním stavebním kamenem generalizace. Jedná se o činnosti, kterými řešíme jednotlivé generalizační situace. Například operátor Vylepšení (refinement) může být provedem operací (postupem) ztotožnení lemovky lesa se okrajovou čarou náspu. To je poté v digitální podobě provedeno pomocí algoritmu ztotožnení, implementovaného například v knihovně WebGen.

Operátor je tedy mechanismus transformace skupiny (0..n) kartografickych objektů na jinou skupinu kartografických objektů (0..m). Operátorem může být i změna použitého symbolu.

Operátory generalizace jsou postupy, pomocí kterých kartograf řeší problémové situace, které vznikly při vykreslení obsahu mapy v určitém měřítku. Použití operátorů není pevně dané, závisí na konkrétní situaci a kartograf se snaží zvolit tu nejvhodnější variantu. Zatímco při ruční práci kartograf využívá pouze znalosti jednotlivých operátorů, při automatizované generalizaci je potřeba operátory implementovat na konkrétní platformě. Například při použití operátoru odsunu na budovu kartograf odsune celou její kresbu, aniž by změnil její tvar, orientaci či velikost, tzn. provede posun všech vrcholů. V případě odsunu okraje lesa posune dostatečně vrcholy které kolidují a postupně i další vrcholy v okolí, tak aby grafický vzhled odpovídal požadavkům na mapové dílo.

V automatizované generalizaci tyto operátory realizujeme pomocí algoritmů operátorů, respektive jejich jednotlivých implementací a strukturálních vzorů, které určují situace (context) kdy je možné či nutné některý z nich použít.

Témata

Klasifikace a symbolizace

Kolaps

Odsun

Vypuštění

Zvýraznění

<u>Vylepšení</u>

Ziednodušení

Agregace

Typizace

Example of the Operators

Thank you for attention